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Monte Carlo study of the Potts glass with nearest-neighbour 
random Gaussian interaction 

H - 0  Carmesin and K Binder 
Institut fur Physik, Johannes Gutenberg-Universitat Mainz, D-6500 Mainz, Postfach 3980, 
Federal Republic of Germany 

Received 28 March 1988. in final form 1 June 1988 

Abstract. The three-state Potts model with nearest-neighbour random Gaussian interaction 
on the simple cubic lattice is investigated by Monte Carlo simulation. Both static quantities 
(e.g. glass ordering susceptibility and the correlation function) and dynamic quantities (the 
analogue of the time-dependent Edwards-Anderson order parameter q(  t )  for Potts spins) 
are obtained. As for related models for orientational glasses, it is found that q ( t )  is 
consistent with the Kohlrausch law q ( t ) a e x p [ - ( t / ~ ) ~ ]  for a wide range of temperatures, 
with a strongly temperature-dependent exponent y, with y becoming very small as the 
temperature T- .  0. The relaxation time T increases dramatically as T is lowered; thus the 
system could only be equilibrated for temperatures where the correlation length is rather 
small. Since the critical region has not been reached, it cannot be distinguished whether 
the critical temperature T, is non-zero or at T = 0. If T, = 0, the divergences of T and the 
ordering susceptibility are probably exponential, i.e. the system is then at its lower critical 
dimensionality. 

1. Introduction 

The p-state Potts model (Potts 1952, Wu 1982) is a lattice model where each lattice 
site i carries a Potts spin SI which can take one of the values SI = 1,2,  . . . , p ,  and the 
interactions are described by the Hamiltonian 

%7= - c JI,&,,S, (1.1) 
( h J )  

where ( i ,  j )  denotes a summation that runs over all nearest-neighbour pairs once, and 
6,, is the Kronecker symbol. Thus a pair {S I ,  S,} contributes an energy -Jl, if SI = S’ 
and zero otherwise. The ferromagnetic Potts model (Ju = J independent of i , j ) ,  which 
reduces to the Ising model for p = 2 ,  has turned out to be one of the most instructive 
models for the study of both first-order and second-order phase transitions in statistical 
thermodynamics. 

Here we are concerned with the random version of ( l . l ) ,  where J, is not uniformly 
ferromagnetic but a quenched random variable described by a Gaussian distribution 
with zero mean: 

P(JI,) a exP[-J’,/2(AJ)*l A J =  1. (1.2) 

While the case p = 2 ,  the Ising version of the spin glass model first introduced by 
Edwards and Anderson (1975), has been studied extensively (see Binder and Young 
(1986) for a review), the model has received relatively little attention for p > 2. The 
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Potts glass with an infinite-range interaction has been studied by Elderfield and 
Sherrington (1983a, b, c), Lage and Erzan (1983), Elderfield (1984), Lage and Nunes 
(1984), Gross et a1 (1985) and Goldschmidt (1988); the short-range Potts glass has so 
far been studied only in the framework of a renormalisation group expansion near six 
dimensions (Goldschmidt 1985). This work predicted a fluctuation-induced first-order 
transition for 2 < p  < 4, but it is unclear whether this prediction is applicable in three 
dimensions. The Potts glass has also been suggested as a starting point for a theory 
of structural glasses and the transition from the metastable fluid to the glass state (Kree 
et a1 1987, Kirkpatrick and Wolynes 1987, Kirkpatrick and Thirumalai 1988). Clearly 
real fluids do not have infinite-range interactions, and thus the short-range Potts glass 
needs to be considered. This model may also serve as a model for orientational glasses 
where a strong single-site anisotropy restricts the orientation of the quadrupole moment 
associated with the appropriate molecular group to p distinct directions. Recently we 
have studied the opposite case of a fully isotropic quadrupolar glass (Carmesin and 
Binder 1987a, b). There exists rich experimental material on orientational glasses (see 
Knorr (1987) for a recent review) but it is not clear whether any of the models mentioned 
so far are appropriate to describe these systems (Kanter and Sompolinsky 1986, Michel 
1986). A study of these models may help to sort out the ‘universality classes’ for glass 
transitions. 

Just as for the study of short-range spin glasses (Binder and Young 1986, Bhatt 
and Young 1987) one has to resort to numerical techniques to study the model defined 
by (1.1) and (1.2). In the present work, we perform a first Monte Carlo investigation 
of this model. Section 2 describes our results for the time autocorrelation function of 
the Potts spin variable and the relaxation time, while 9 3 analyses the static properties 
of the model and discusses the question whether a finite-temperature glass transition 
occurs. Section 4 contains our conclusions. 

2. The time-dependent Edwards-Anderson order parameter for the short-range 
Potts glass 

We study simple cubic L x L x L lattices, applying periodic boundary conditions for 
the case L =  12. For the temperature 0.35 we simulated a lattice of size L =  18. 
Considering the three-state Potts model as a limiting case of a quadrupolar model with 
very strong cubic anisotropy, we redefine the Hamiltonian (1.1) slightly: we define a 
unit vector Si = ( S ; ,  SY, Sf) whose components are either zero or unity, so there are 
only six states permissible: Si = (*l, 0, 0), (0, * 1,O) or (0, 0, * 1) respectively. The 
Hamiltonian is written (as in the p-state case) 

Note that (Z”,=, SrSj’)2 = 1 for Si = S, as well as for Si = -3, while in all other cases 
Z”,=l SySj’ = 0. So we have to take both states {Si, - Si} as corresponding to one state 
of the Potts model. In (2.1) we also have introduced a field, h, favouring ‘ferromagnetic’ 
quadrupolar ordering, but in the actual computations we use h = 0 unless otherwise 
stated. The reason for writing the Potts Hamiltonian in this form is that the simulation 
programs written for the isotropic and anisotropic quadrupolar glasses (Carmesin and 
Binder 1987a, b, Carmesin 1988a) can then be carried over to the present problem with 
only minor changes. 
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With this notation, the Potts analogue of the time-dependent Edwards-Anderson 
spin glass order parameter (Binder and Young 1986) can be written as (see also 
Carmesin and Binder (1987a, b); N is the total number of lattice sites) 

q(  t )  = - c [Si( t ' )  * Si( t ' +  t)]' - - (1 - l/p)-I (h i ( P )*) av 

where ( ),, denotes the sampling over the bond distribution P ( J v )  of equation (1.2) 
(typically we average over 80 individual runs with different realisations { J j } ) ,  and ( )*, 
is the time average as obtained by standard Metropolis Monte Carlo sampling (Binder 
1979). Since even for completely random configurations of the Potts spins [Si( t ' )  .Si( t'+ 
t)]' is unity with probability l/p, a term l / p  is subtracted in order that q( t )  = 0 for 
uncorrelated Potts spins. The denominator (1 - l / p )  is introduced so that q( t )  = 1 for 
a perfectly correlated case (the corresponding denominator (1 - 1/ m )  has been 
erroneously omitted in equation (9) of Carmesin and Binder (1987b) and in equation 
(3) of Carmesin and Binder (1987a)). 

Figure 1 presents our numerical results for q ( t ) ,  plotting the same Monte Carlo 
'data' in three different ways to illustrate the extent to which different decay laws can 
be distinguished. The decay laws considered are motivated by analogous findings for 

10 

1 

0.5 

0.2 

f 

T s1.5 

0 

A 
0 
A + 
+ 

X 

' a  

.?x  

o +  

0 . 1 1  

t 

Figure 1. Plot of the time-dependent Edwards- 
Anderson order parameter q(  t )  of the Potts glass for 
various temperatures ( k ,  = 1) as indicated. (a) 
shows q(  t )  plotted logarithmically against t, (b )  
shows a log-log plot of q ( t )  against t and ( c )  shows 
a plot of log (-log(q)) against t. Time is always 
measured in units of Monte Carlo steps (MCS) per 
site. 
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spin glasses (Binder and Young 1986): 
q( t )  a constant - log t ( 2 . 3 ~ )  
q( t )  a t c a  (2.3b) 
q ( t )  aexp[- ( t l  7YI ( 2 . 3 ~ )  
q( t )  a t-* exp[ -( t / ~ ) ~ ]  (2.3d) 

and (Van Hemmen and Suto 1985, Van Hemmen and Nieuwenhuys 1986): 
q ( t )  a ( t /T ) -A[ log ( r /7 )1 ’  (2.3e) 

Of course, all these decay laws are singular for t + 0 and cannot describe the relaxation 
of q ( t )  at short times; in addition, it is clear that ( 2 . 3 ~ )  cannot hold for late times, 
where q( t )+O,  and can therefore at best be a description for intermediate times. 
Nevertheless, we proceed to test the validity of ( 2 . 3 ~ ) .  Figure l (a )  shows that a plot 
of q ( t )  against log t everywhere exhibits some curvature. The strong curvature of the 
log-log plot (figure l (b) )  shows that (2 .3b)  is not a reasonable description of the 
Monte Carlo results either. As the approximate linearity of figure l (c)  shows, the 
Kohlrausch (1847) law, equation (2.3c),  represents a reasonable fit to the data and 
hence will be used as a phenomenological basis to analyse our data. 

Careful work with a special purpose computer has revealed that the three- 
dimensional Ising spin glass (i.e. the case p = 2 in equation (2.1)) can be better described 
by (2 .3d )  than by ( 2 . 3 ~ )  (see Ogielski 1985). One might then expect that (2 .3d)  should 
also apply for the case p = 3. If such a power law correction actually occurs here as 
well, the exponent a is presumably smaller than its counterpart in the Ising * J  spin 
glass at comparable temperatures. It is also possible, of course, that there is a distinction 
in the relaxation behaviour between models with a discrete * J  distribution of bonds, 
as studied by Ogielski (1985), and the continuous distribution, (1.2), as used here and 
in Carmesin and Binder (1987a, b). Since we only have accurate data over a somewhat 
smaller time range than are available for the Ising case, we have not attempted to fit 
with (2 .3d ) .  Similarly, a recent analysis of very precise experimental results on spin 
glasses has shown that (2.3e) is distinctly preferable to (2.3c, d )  (see Van Hemmen 
and Nieuwenhuys 1986). Unfortunately, the present numerical results lack the very 
high precision needed to establish (2.3e) in the present case. Both (2.3d, e )  involve 
one parameter more ( a  or A, respectively) than does ( 2 . 3 ~ ) .  Thus the parameters T 
and y obtained from fitting the time-dependent Edwards-Anderson order parameter 
q( t )  with ( 2 . 3 ~ )  should be taken as phenomenological constants providing a numerical 
representation of q( t ) ,  and not necessarily having a deep physical significance. 

Nevertheless, it is interesting to note that the exponent y (figure 2 )  varies approxi- 
mately linearly with temperature over a wide temperature range. A similar behaviour 
was in fact noted by Ogielski (1985) for the * J  Ising spin glass. Ogielski (1985) 
suggested that at the transition temperature y =+. As we shall see later, in the present 
case y is somewhat smaller at the transition temperature, if a finite-temperature 
transition occurs at all. 

We now turn to the discussion of the effective relaxation time T obtained from the 
fit to ( 2 . 3 ~ ) .  Figure 3 ( a )  shows that for T S  1, where the results are most reliable, a 
simple Arrhenius behaviour is not consistent with our results, although at low tem- 
peratures ( T  < 1) the results could be fitted to an Arrhenius law, In T a  1/ T. Anyway, 
no conclusive inference about simple Arrhenius behaviour can be made from this fit 
(figure 3 ( a ) )  because the fitted relaxation times for T ~ 0 . 3  are so large that they 
distinctly exceed the observation times available in the simulation. Hence we cannot 
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Tempera ture  

Figure 2. Plot of the effective exponent y against temperature, as obtained from a fit of 
results such as  shown in figure 1, invoking the validity of equation ( 2 . 3 ~ ) .  

consider the estimates of T for T S 0.3 to be reliable. Furthermore, our results on the 
static correlations (see 0 3) suggest that our results for T 6  0.3 are also strongly affected 
by finite-size effects. As a consequence, alternatives to the Arrhenius behaviour should 
also be considered. If we assume that there is no phase transition at non-zero tem- 
peratures and that T X  6’ cc Tu’, with vz some exponent, we would expect a plot of 
In T against In T to be linear, with the slope being given by vz at low enough 
temperatures, such that the asymptotic scaling regime is reached. However, figure 3 ( d )  
shows that there is no significant regime where this plot is linear, for the temperatures 
T > 0.3 for which we believe the relaxation time estimates to be reliable, as well as for 
temperatures T < 0.3 for which our estimates for T are underestimated. If, for T G 0.1 
a straight line fit were possible, the resulting exponent vz 3 24.8 is so large that it is 
clear that the law T X  T-”’ is not appropriate. In fact, it is more likely that either 
vz+m (if T,=O) or one has a phase transition at non-zero temperature. Since the 
latter behaviour is now believed to occur for the Ising spin glass (see, e.g., Ogielski 
(1985) or Bhatt and Young (1987)) we have tried a fit to T c c  (1 - T,/T)-”’ as well. 
Figure 3 ( 6 )  shows that choosing T, to have a very small value (T, = 0.1 1) the log-log 
plot still exhibits a significant curvature, while for T, = 0.23 (figure 3( c)) a straight line 
fit is obtained for a broad temperature range (0.26 1 - TJ T <  0.8). However, since 
all these temperatures are outside the critical region, it is not clear whether this fit is 
relevant. In any case, these plots indicate that T, is smaller than in the corresponding 
king spin glass and that zv is larger (remember zv = 7 for the case of the Ising spin 
glass (Ogielski 1985)). This is not unexpected. This very strong critical slowing down 
necessarily makes it very difficult to obtain reliable Monte Carlo results both for static 
and for dynamic quantities, except for temperatures very far from T,. Therefore 
ambiguities in the interpretation of the results are inevitable. 

3. Static properties 

In 0 2 we have seen that the relaxation time increases dramatically for T < 4, and hence 
particular care must be exerted in equilibrating the system, because otherwise all 
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Figure 3. Temperature dependence of the effective relaxation time T extracted from a fit 
of q ( r )  to the Kohlrausch law, equation (2.3c), at various temperatures. ( a )  presents a 
plot of In T against 1/  T while ( b )  and (c) show plots of In T against In( 1 - TJ T )  with 
Tc=O.ll and 0.23, respectively, as well as against In T ( d ) .  

observations of ‘static’ properties may be systematically in error due to incomplete 
equilibration. 

Following the pioneering work by Grest et a1 (1986) we studied some quantities 
by varying the cooling rate: we lower the temperature continuously during the time 
interval [0, A T ] ,  {1/ T(  t )  = ( t / A r ) (  1/  T ) } ,  to equilibrate the system at the final tem- 
perature T. Varying the time constant AT of the cooling process over a wide range, 
we can check whether the results are independent of AT for sufficiently large AT. We 
find that this is the case for T a  i, choosing AT in the range from AT = 50 to AT = 300 000 
Mcs/site. On the other hand, in the temperature region where, possibly, a phase 
transition occurs (0.1 G T d 0.4) we find that the internal energy E is consistent with 
a variation 

E ( A T )  = E(co)+constant/ln AT (3.1) 

i.e. the same law as proposed by Grest et a1 (1986) for the ground-state energy of the 
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Ising spin glass. The behaviour described by (3.1) is not a proof that a phase transition 
has occurred at T S 0.4, however, since we also find the same behaviour for the isotropic 
quadrupolar glass at low temperatures (see figure 4), where we expect T,=O (see 
Carmesin and Binder 1987a, b). The behaviour, described by (3.1), has also been 
found by Grest et a1 for the two-layer model, which has T,=O, and thus does not 
require T, # 0 but T = CO. We rather feel that (3.1) may hold for T >  T, also for a 
restricted range of AT (e.g. A T <  T )  and therefore the extrapolation according to (3.1) 
may also be systematically in error: if the equilibrium energy E(co)  is basically already 
reached for A T = T ,  (3.1) leads to a systematic underestimation of E(co).  Thus it is 
conceivable that the true equilibrium energies lie between the extrapolated values and 
the values obtained by standard methods where the system is brought to the desired 
temperature immediately, and the first AT' > T configurations are discarded from the 
averaging (see figure 4). Thus we can locate only rather roughly the position of the 
specific heat maximum, where the E against T curve has its inflection point. For the 
Potts glass, for which the specific heat C( T + 0) = 0 due to the discrete nature of the 
degrees of freedom (the probability of having a degenerate ground state is zero; see 
Schwartz and Sherrington (1985)), the maximum occurs around T z 0 . 4  (see figure 
4( d ) ) .  For the isotropic quadrupolar glass, where C(  T + 0) = 1 (the model is classical 
and has two orientational degrees of freedom) the maximum probably occurs near 
T = 0.2. In both cases the specific heat maximum is not related to the phase transition, 
as expected from the experience with spin glasses (Binder and Young 1986). 

The problem that in the temperature region of interest static quantities still depend 
on the cooling rate and need to be extrapolated is not just a problem restricted to the 
internal energy, but occurs for other quantities as well. As an example, figure 5 presents 
the response ( S : )  to a non-zero ordering field h = 0.1 in (2.1). Since in the absence of 
this ordering field ( S : )  = ( S : )  = ( S s )  = f ,  the quantity to consider is ( S z )  - 5 .  Again, we 
find that for T 2 1  there is no difficulty in measuring the equilibrium response, while 
for T d 0.4 some cooling rate dependence is detected. For low temperatures ( T G  0.3) 
the response is nearly T independent, at least within our accuracy. Since we again 
expect that the resulting value, (S:)-f=O.l, may overestimate the true result if the 
curves ( S s )  -f  against l / ln  AT bend over horizontally at smaller l / ln  AT where AT = T,  

we can at least conclude that there is no tendency to establish a ferromagnetically 
ordered Potts phase at low temperatures, although for 1 < T <  10 the variation of 
(St)-$ with T is steeper than according to the Curie law. At this point, we recall that 
mean-field theory for the infinite-range Potts glass (Gross et a1 1985) even predicts 
two successive phase transitions: as the temperature is lowered, one first encounters 
a transition from the disordered phase to a glass phase, while at lower temperatures 
a transition to a different type of glass phase occurs. There are no observations 
whatsoever that would indicate that the short-range system also has two successive 
phase transitions. 

Figure 6 shows our results for the correlation function and correlation length, which 
we have defined as in the quadrupolar case (Carmesin and Binder 1987a, b) 

( 3 . 2 ~ )  

1/(-  - l n g ( R ) / R  (3.2b) 

choosing the direction of R to lie in a lattice direction. Here ( . . . ) R , - R , = R  describes 
the average over those pairs of sites for which Ri - R, = R holds. Again, the results 



4060 H - 0  Carmesin and K Binder 

Temperature 
1 I l n  ( A d  

- 0.82 

- 0.86 

4 

- 0.90 

- 0.94 

ii 

25 

0.8 i 

0 . 4 :  

0 . 4 :  

0 . 2 1  

0.2 0.6 1.0 1.4 

Temperature 

Figure 4. ( a )  Internal energy E per site for the Potts glass and the isotropic quadrupolar 
glass (with vector dimensionality m = 3) plotted against temperature. ( b )  and (c) Extrapola- 
tion according to (3 .1)  for the isotropic quadrupolar glass (6) and the Potts glass (c); the 
extrapolated values (arrows) are included as triangles (or lying crosses, respectively) in 
the main figure, while octagons (standing crosses) are due to the standard method. 
Temperatures shown are T = 0.075 (octagons), 0.05 (triangles) and 0.025 (crosses) in ( b ) ,  
and T = 0 . 4  (octagons), 0.3 (triangles) and 0.2 (crosses) in (c). ( d )  Specific heat C of the 
Potts glass plotted against temperature. Octagons are data obtained from energy fluctu- 
ations, while triangles are obtained from numerical differentiation of the E against T curve. 
A curve is drawn only to guide the eye. 

for the lowest temperatures shown may suffer somewhat from systematic errors due 
to incomplete equilibration. But the results clearly show that the correlation length is 
indeed rather small in this temperature range, 6 s  2 lattice spacings. Thus with L = 12 
and L =  18 finite-size effects should not be a problem. A log-log plot of 6 against 
1 - T,/ T for the choice of T, where the relaxation time was reasonably well fitted, 
T, = 0.23, still exhibits some curvature, indicating that possibly T, is even lower (figure 
6( c)). However, for the choice T, = 0 the curvature goes in the other direction, indicating 
that T, might be non-zero (figure 6 ( b ) ) .  The slope of the straight line in figure 6 ( c )  
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Figure 5. Temperature dependence of (Si)-; at h = 0.1 plotted on log-log scales ( a )  and 
extrapolation of ( S l ) - f  against l/ln(A.r), ( b ) .  Octagons in the upper part are obtained 
from linear extrapolation, as shown in ( b ) ,  while triangles are equilibrium results obtained 
in the standard way (see figure 4). The line represents the result obtained by a high- 
temperature expansion. 

implies v = 2, while figure 6(c) implies that v is as least as large as v = 2.2. But the 
small values of 5 indicate that the asymptotic critical region has not been reached and 
thus these results do not exclude rather different values for the critical exponent v. 

In view of the foregoing it is also no surprise that the ordering susceptibility 

Tx = c g ( R )  (3.3) 
R 

also cannot be interpreted unambiguously (figure 7). While for T, = 0 the log-log plot 
exhibits pronounced curvature throughout the temperature regime shown, and so only 
a lower bound for the exponent y{  Tx a T-"} could be derived: y B 4.75. Reasonable 
straight line behaviour occurs for choices of non-zero values of T,, such as T, = 0.23 
or T,=O.11. The resulting choices of y ( ~ ~ 3 . 8  or y-12.6 respectively) satisfy the 
inequalities y S 3 v  and y s  zv, and thus these exponent estimates at least are not 
completely unreasonable. But again the results do not yield any clear preference for 
the choice of T,. 

Figure 7 also shows that for T 3  1.0 the results for X T  are rather well described by 
the first terms of a systematic high-temperature expansion (Carmesin and Ohno 1987). 
Extending such series to high order, as in the Ising case (Singh and Chakravarty 1986), 
should hence yield valuable additional information on this model. One has to keep 
in mind, however, that below the corresponding ferromagnetic transition temperature 
it is still an open question whether such expansions converge at all. 

4. The three-dimensional short-range Potts glass: a system at its lower critical 
dimensionality? 

From the analysis of 00 2 and 3 it is clear that the short-range Potts glass model 
Hamiltonian ((1.1) and (1.2)) leads to a dramatic increase of the relaxation time as 
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Figure 6. ( a )  Correlation function g ( R )  plotted 
against R for several temperatures as shown in the 
figure. Straight lines on this semilog plot yield esti- 
mates for 1/[, see ( 3 . 2 b ) .  ( b )  Log-log plot of [ 
against T. (c) Log-log plot of € against 1 - T,/ T for 
T, = 0.23. The straight line represents an exponent 
v = 2 .  

a reliable estimation of the phase transition 
behaviour of the model is very difficult. Nevertheless our results suggest the following 
tentative conclusions. 

(i) If the lower critical dimension of the model exceeds three, one would expect 
simple power laws for the relaxation time, correlation length and susceptibility: T a  

T-"', e a  T-", XTa T-'. However, the results clearly do not suggest such a behaviour: 
these laws, if they hold at all, could hold only for the lowest temperatures studied and 
all the lower bounds obtained on the exponents vz, Y and y are so large that it is 
rather likely these exponents are infinite, i.e. d = 3 would be the lower critical dimension. 

(ii) If d = 3  exceeds the lower critical dimension, one should have a non-zero 
critical temperature T, and the temperature variable in the above power laws is 1 - TJ T 
rather than T. Our Monte Carlo results are consistent with such a behaviour, but 
unfortunately a broad range of values for T, yields fits of similar quality and it is clear 
that the data do not fall in the critical region (1 - T,/ T )  d 0.1. 

Can our results at least be taken as evidence that there is a non-zero T,? We feel 
that even this conclusion is doubtful, for the following reason. If T, = 0 and the system 
is at the lower critical dimension, as inferred above, we would expect a behaviour 



Monte Carlo study of the Potts glass model 4063 

s 

0.3 0.5 0.75 1 0.65 0.75 0.85 0.95 

I - T , / T  l - T c l T  

h x 

0.5 0.75 1 1.5 2 

Temperature 

Figure 7. Log-log plot of the ordering susceptibility 
of the Potts glass (equation (3.3)) against 1 - T J  T 
for two choices of T,, namely Tc=0.23 ( a )  and 
T, = 0.1 1 ( b ) ,  and against T (c) .  The full curve in 
( c )  is calculated from the first three terms of a system- 
atic high-temperature expansion (Carmesin and 
Ohno 1988). Straight lines in ( a )  and ( b )  represent 
exponents y = 3.8 or y = 12.6, respectively. 

described by exponential divergences 

In .$a T-"' In r a  T-'' XTa 5'' (4.1) 

where the exponents v', z' and y' are finite (McMillan 1984, Bray and Moore 1987). 
To test (4.1) we present log-log plots of In r and In ,yT against T (figure 8). It is seen 
that both T and ,yT are consistent with (4.1), with v'== 1.2 and ~ ' ~ 2 . 1 .  

On the other hand, a phenomenological renormalisation treatment of spin glasses 
(McMillan 1984) yields v' = 2, z' = v'+ 1 and hence z' = 3. While the values we obtained 
for these exponents agree well with z ' =  v 'S  1, they clearly disagree with v ' = 2  and 
hence they disagree with z' = 3 as well. It is not clear to us whether the phenomenologi- 
cal renormalisation results for z' and v' should be considered rigorous. But we fully 
agree with the point made by Bhatt and Young (1987) who stated that for spin glasses 
several methods needed to be combined (finite-size scaling methods and 'domain wall 
renormalisation group methods', in addition to straight Monte Carlo as presented 
here), in order to locate the phase transition convincingly: such additional methods 
will be needed here as well. Also, the extension of the present study to larger numbers, 
p ,  of Potts states would be very interesting. And an investigation of other spatial 
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Figure 8. Log-log plot of In T (triangles) and ln(,yT) (octagons) against temperature. 
Straight lines indicate the behaviour given by (4.1), with ~ ' ~ 1 . 2  and 2'-2.1. 

dimensionalities ( d  = 2,  d = 4) will be needed to further elucidate the problem of the 
lower critical dimension. 
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